
www.ScienceSocial.netS2n

ScienceSocial.net - S2n20-04-01
ISSN 2366-0104

Improving wildlife population
density estimation from
vertical looking imagery

by

J. Viße
U. Franke



ScienceSocial.net
Sharing Science
with a fair share

S2n is based on the idea that 
science is more than a
proclamation of facts but a
discussion of arguments by
sharing ideas.

S2n is a discussion board
that is basically interdisciplinary
and problem orientated

S2n is open source
while accepting the
rights of the author(s)

ideas are open for a free mind
but possession is prized

cover outside: chones@fotolia
cover inside: halfpoint@fotolia



ScienceSocial.net 

www.ScienceSocial.net S2n 

Improving wildlife 
population density 

estimation from vertical 
looking imagery 

working paper 
 

by 

 

Authors Jakob Viße (jakob.visse@wildlifemonitoring.eu) 

Ulrich Franke (u.franke@aerosense.de)  

 

April, 2020 

 

  

mailto:jakob.visse@wildlifemonitoring.eu
mailto:u.franke@aerosense.de


2 Improving wildlife population density estimation 

S2n www.ScienceSocial.net 

Cite as: 

Viße, J., Franke, U.; 2020; " Improving wildlife population density 

estimation from vertical looking imagery "; ScienceSocial.net; ISSN 

2366-0104; S2n-20-04-01; https://sciencesocial.net/ 

 

Funding Information 

This work was prepared for wildlifemonitoring.eu  

 

Copyright 

Copyright and all rights are maintained by the author(s). It is 

understood that all persons copying this information will adhere to 

the terms and constraints invoked by each author's copyright. 

These works may be reposted only with the explicit permission of 

the copyright holder. Permission is given to duplicate this document 

for personal use only, as long as it is unaltered and complete. 

Copies may not be duplicated for commercial purposes. 

  



Improving wildlife population density estimation 3 

www.ScienceSocial.net S2n 

Content 

1 Abstract 4 

2 Introduction: status quo 5 

2.1 Need for wildlife density estimation 5 

2.2 Using vertical looking imagery 5 

2.3 Advantages over similar methods 6 

3 Limitations and sources of error 8 

3.1 Error in the study design 8 

3.2 Detection error and observer bias 9 

3.3 Availability modelling 10 

4 Proposing new methods 11 

4.1 Quantifying study design error 11 

4.2 Estimation process 12 

4.3 Modelling availability bias 15 

5 Modelling spatial distribution of populations 16 

6 Implications 17 

7 References 18 

 

  



4 Improving wildlife population density estimation 

S2n www.ScienceSocial.net 

1 Abstract 

In population ecology reliable estimates of animal densities inform 

thorough wildlife management. A multitude of techniques to obtain 

estimates accounting for detection probability have been 

developed. With airborne vertical looking thermal infrared (VLIR) 

imagery, recent advances in remote sensing technology provide 

these means. In combination with visual images this allows for 

animal counts, species identification and density estimation over 

large areas. However, correctly incorporating detection probability 

into the models has been an ongoing topic of debate. Here, we 

propose a survey design using these approaches to address some 

of the current limitations for estimating wildlife densities using state-

of-the-art technology. More specifically, we want to (1) use an 

established data acquisition method, namely applying a systematic 

airborne line transect approach with a multi-spectral (thermal 

infrared, TIR; visual, VIS) camera setup; (2) as a novelty, use 

manual detections as well as several covariates, e.g. difference of 

emitted temperature (ΔT) of the animal to the surrounding 

environment, spatial resolution and vegetation cover derived from 

the VLIR and visual imagery, to (3) estimate wildlife densities by 

modelling a corrected detection probability. The proposed model 

could be used for manned and unmanned (UAS) surveys alike. 

With this working paper we want to enrich the ongoing discussion 

and we appreciate your comments. We are open for any kind of 

cooperation, so do not hesitate to contact us. 

Keywords: wildlife monitoring, density estimation, vertical looking, 

aircraft, covariates, aerial survey, modelling, detection probability, 

UAS 
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2 Introduction: status quo 

2.1 Need for wildlife density estimation 

In wildlife ecology reliable data of animal densities inform the 

management about ecosystems and populations. Several 

methods counting aspects of wildlife are established, like direct 

spotlight or indirect pellet counts or using hunting data. These 

classical methods are usually used to obtain an index for increasing 

or decreasing populations in time series. Furthermore, over the 

decades a multitude of techniques to obtain estimates accounting 

for detection probability has been developed. For example, in 

conventional distance sampling (CDS) (Buckland et al. 2015) 

measures are needed to calculate detection probabilities and, 

accordingly, animal densities. In general, distances can be derived 

in various ways such as people walking a transect line or staying 

at a centre point, driving with a car or a boat, and flying with 

aircrafts, recording detections and their distance immediately when 

they occur. As long as measurements are accurate, their exact 

source is of minor importance. Recent advances in remote sensing 

technology provide the basis for accurate counts of individual 

animals (Hollings et al. 2018; Wang et al. 2019). Thus, they offer a 

promising opportunity to improve existing wildlife population 

density estimates.  

2.2 Using vertical looking imagery 

Recently, the potential of synchronously used vertical looking (VL) 

thermal infrared (TIR) and visual (VIS) imagery has been shown 

(Franke et al. 2012) and is being used successfully in practice. 
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While TIR facilitates relatively easy detection of animals, visual 

images provide information about species and other animal 

characteristics. Furthermore, they offer the possibility of deriving 

environmental covariates from the imagery at the same time. 

Detection takes place either immediately or in image post-

processing, either manually or (semi-)automated (Hollings et al. 

2018; Terletzky and Ramsey 2016). 

We have several years of experience applying this technique for 

estimating ungulate densities in various habitats such as open 

landscapes, forests and mountainous areas. We analyse 

synchronous visual and TIR images on two separate screens. 

Conspicuous heat signatures on the TIR film are verified on the 

visual image, and - if necessary - further animal characteristics can 

be derived. 

2.3 Advantages over similar methods 

The advantages of airborne monitoring, particularly with manned 

aircrafts, have been described in detail (Christie et al. 2016). One 

of its greatest strengths is the acquisition of centimetre scale 

imagery over large areas (Beaver et al. 2014; Wang et al. 2019). 

For a recent review of methods to analyse remotely sensed 

imagery in general, see Hollings et al. (2018). 

Visual imagery, which is recorded in the part of the electromagnetic 

spectrum visible to humans, is being used commonly to count 

animals. Under suitable conditions, individuals can be clearly 

distinguished, both against their background environment and 

each other if they occur in clusters. Potentially, further information 

can be derived from coat colour or other morphological features 

such as sex or age. However, bright sunlight, shadows and / or 
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heterogeneous environments can impede or even lead to false 

identification. Using multiple spectral bands, most prominently TIR, 

adds further information and improves detection (see Chrétien et 

al. 2016; Kissell and Nimmo 2011; Millette et al. 2011). TIR light is 

electromagnetic radiation known as heat. Since all animals lose 

energy as a result of their metabolisms and thermoregulation, it can 

be used to detect them via their heat signatures. As with visual 

imagery, surrounding conditions have to be perfect to allow certain 

identification (Havens and Sharp 2016). Enhancing factors are 

contrast to the surrounding, habitat association, temporal 

exclusivity, coloniality and landscape differentiation. Hindering 

factors can be, for example, vegetation cover blocking radiation, 

other heat emitting objects or a small difference to the animal’s 

surface temperature. 

In airborne monitoring, two camera systems are being utilized: 

forward looking (FLIR) and vertical looking TIR (VLIR). While in the 

former setup the camera is mounted with an angle from aircraft 

nadir to the horizon, the latter faces down perfectly vertical. FLIR 

allows to cover larger areas within an image, whereas VLIR has 

the advantage to easily calculate linear and area measurements, 

and has the most consistent pixel resolution across the image 

(Paine and Kiser 2003). 

Recent examples of TIR and / or covariate use have been given for 

marine mammals (Aniceto et al. 2018; Williams et al. 2017; Young 

et al. 2019), but also terrestrial species (Carr et al. 2012; Kissell 

and Nimmo 2011; Schoenecker et al. 2018). They demonstrate in 

general, the techniques’ potential and advantages such as 

standardised design; reduced costs (Schoenecker et al. 2018); 

relatively large areal cover; non-invasiveness; low disturbance; 
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simultaneous generation of up-to date habitat information. 

However, the approaches differ in detail about assumptions they 

make, and owing to specific ecosystem and animal characteristics. 

Although the method produces robust density estimates, some yet 

unresolved issues remain.  

3 Limitations and sources of error 

Similar to other monitoring approaches, study design choices 

depend on the desired output. The size of the Study area 

determines if a survey on foot, via Unmanned Aerial Systems 

(UAS) or aircraft is most feasible. We are generally interested in 

improving the use of VL imagery for wildlife density estimation, 

namely assessing and correcting for the different errors inherent to 

it. 

3.1 Error in the study design 

One potential source of error lies in the study design. This aerial 

design error might lie in the layout, i.e. length, width and density of 

flown strip transects. Nevertheless, if transects overlie the study 

area in a systematic manner, with the first transect randomly 

placed, the assumption of a representative sample can be met. 

Furthermore, transects are then assumed to be independent of 

animal locations (Buckland et al. 2001). So far, we could not 

recognise any responsive movement in our aerial surveys (flying 

400-600 m above ground) allowing us to detect the animals at their 

initial position. Therefore, double counting does not affect our 

density estimation. In summary, study design should be thoroughly 
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chosen according to local study area, population and available 

resources. 

3.2 Detection error and observer bias 

In general, two types of detection bias exist: false-negative errors, 

i.e. missed detections of animals; or false-positive errors, i.e. 

detections through misidentification or double counting (Brack et al. 

2018). Further sources of detection bias comprise clustering, since 

aggregations of animals are more conspicuous; age, because 

young individuals are smaller and often have camouflage coats; or 

environmental factors such as vegetation, particularly by 

coniferous trees, or topography cloud cover (LaRue et al. 2017). 

Distance sampling methods assume a varying probability of 

detection depending on some measure, usually the distance from 

a line transect or sample point in CDS (see Buckland et al. 2001). 

For line transects, the assumption of a uniform distribution of 

animals with regard to the line has to be met, for example by 

placing transects equally spaced into the study area. For VL 

imagery, analogue to CDS, Schoenecker et al. (2018) present 

another idea how to meet the assumptions of reduced detection 

probability with increasing distance from the centre line. They use 

an unaltered uniform model, assuming perfect detectability across 

the imagery, with detection probability likely decreasing radially 

from the image centre due to blind spots (cf. Kissell and Nimmo 

2011). On the other hand, Millette et al. (2011) did not find such a 

parallax effect in their study. Especially with the use of small strip 

widths of about 80–150 meters, we do not see a correlation 

between detection probability and distance to the centre line 

(Deuker and Franke 2015).  
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Moreover, some authors argue that the application of airborne 

monitoring for detecting wildlife is restricted by size, shape and 

further animal characteristics, for example contrast to the 

surrounding. This can possibly be more important than spatial 

resolution (Laliberte and Ripple 2003). In particular cases a multi-

species approach is desired (e.g. Chrétien et al. 2015). Here, 

misidentification between similar species can be a problem, but 

more prominently for automated counts without post-checking 

(Brack et al. 2018). However, at wildlifemonitoring.eu we are able 

to manually distinguish different large ungulate species from TIR 

and VIS imagery. 

3.3 Availability modelling 

A third source of bias lies in the availability of animals for detection, 

namely if they are available to count when the aircraft flies over 

them. The term is not always clearly separated from detection bias, 

but Brack et al. (2018) offer a definition, referring to it as 

unavailability for detection due to animals being submerged or 

hidden below vegetation. For our aerial surveys, animals might only 

be unavailable for detection while standing under dense coniferous 

trees, where detection probability is zero. Furthermore, availability 

can be a function of habitat use and so, indirectly, environmental 

factors as well. One can account for this in the study design, for 

example by using auxiliary information such as telemetry data, 

double observer methods, or sophisticated modelling techniques 

(e.g. Williams et al. 2017). However, acquiring additional data or 

using double observer methods like tandem flights can increase 

overall costs dramatically. 
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4 Proposing new methods 

Here, we propose an improved systematic survey design for 

wildlife population density estimation using VL imagery from aerial 

systems, which can be manned or unmanned. The combination of 

recent technology and statistical modelling techniques, in our 

opinion, is highly suited to achieve this. Furthermore, we stress the 

collaboration of experts in the fields of wildlife ecology and 

monitoring, remote sensing, and statistics to achieve the best 

possible method.  

In comparison to distance sampling from vehicles or telemetry 

studies, airborne approaches pose relatively little stress to the 

animals. Nevertheless, there is vast literature about responses of 

wildlife towards human disturbances (e.g. Enggist-Diiblin and 

Ingold 2003; Frid and Dill 2002; Hamr 1988; Gander and Ingold 

1997). Species react differently both qualitatively and 

quantitatively. Presumably, there are also differences between 

populations, e.g. hunted vs. non-hunted, or depending on 

habituation to humans in general (Gill et al. 1997; Jayakody et al. 

2008; Sibbald et al. 2011; Tablado and Jenni 2017). We are aware 

of it and incorporate them into monitoring by adjusting flight time or 

height. 

4.1 Quantifying study design error 

More specifically, we aim at using our established survey design 

(cf. Franke et al. 2012) to receive a representative sample of the 

study area of interest. To assess the robustness of our method we 

suggest a resampling approach, randomly drawing a proportion of 

our sampled strip area, divided into equally sized segments. 
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Thereby, we can quantify the variation in the sampling process as 

a measure for the robustness of the method. Having access to a 

large data base of image material, we can use subsamples from 

the same study or data from different areas. 

4.2 Estimation process 

The use of airborne camera systems produces large amounts of 

video and image material that needs to be scanned for animal 

detections. Especially, since UAS are becoming more accessible 

and, thus, approaches to automatize the material have been 

developed accordingly (Chabot and Francis 2016; Chrétien et al. 

2015, 2016; Conn et al. 2014; Hollings et al. 2018; Seymour et al. 

2017). For our purposes (i.e. heterogeneous habitat, small animal 

clusters or individuals, etc.) manual counts proved the most 

reliable. Nevertheless, with algorithms being improved and 

increasing training data, we follow the development with interest. 

Since the raw data is stored on hard drives, it can be investigated 

post-hoc multiple times or by different analysts and, thus, allows for 

some correction of observer bias. For example, Buckland et al. 

(2012) tested it using randomised double-blind reviews of a certain 

proportion of their raw data. Agreement between individual reviews 

was more than 90% in their study.  
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Figure 1: Diagram showing the three-step workflow of our proposed 

method: (1) In a standardised line transect survey we use a 

dual setup of TIR and VIS cameras for detecting and 

identifying individual animals and derive further 

characteristics as well as information about the habitat. (2) 

We also use habitat data for calculating a masking factor as 

measure for detection probability. (3) All data as well as 

technical details about the flight and the images are finally 

used to model population density accounting for imperfect 

detection of the animals. 

We want to model probability of detection as a function of masking 

and additional covariates, similar to multi-covariate distance 

sampling (MCDS) (Marques et al. 2007). According to the authors, 

its main use is to increase reliability of density estimates made on 

subsets of the whole data to increase precision of density estimates 
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or to allow inferences about the covariates. Density estimates are 

then supposed to be calculated from statistical modelling, 

accounting for several covariates likely to affect detection 

probability (Table 1). These are going to be derived from the 

imagery at the same time, complemented by aircraft, weather and 

elevation data. 

For VLIR imagery, deriving a masking factor as measure of 

detection probability has been proposed (Beaver 2011; Franke et 

al. 2012). In our method the masking factor is represented by the 

vegetation cover. The method assumes perfect detection without 

any masking, as well as masking independent of animal 

distribution. While the former can be met by flying under perfect 

conditions (Bernatas and Nelson 2004; Millette et al. 2011), the 

latter has to be carefully ensured considering species and study 

area. As a measure for detection probability we want to use the 

masking factor, here vegetation cover and environmental 

conditions affecting sight ability derived from available TIR and VIS 

imagery, as well as further variables (Beaver 2011; Deuker and 

Franke 2015; Franke et al. 2012). They can be included as 

covariates into a sight ability model (Kissell and Nimmo 2011; 

Samuel et al. 1987), namely a logistic regression model with a 

binary response (detected/undetected), which can be used to 

correct total counts.  

Thereby, we want to close gaps in the methodology, e.g. derive 

improved correction factors for detection probability in closed 

landscapes such as forests (cf. Carr et al. 2012; Samuel et al. 

1987). 
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Variable Description 

Vegetation cover 
Animals can be covered by leaves and branches of trees or 
bushes. This prevents the radiation from reaching the 
detector. 

∆T animal/environment 
The temperature difference between animal and 
environment is a measure for signal strength: the larger ∆T 
the higher the contrast and, accordingly, p. 

Spatial resolution 
The spatial resolution in centimetre per pixel depends 
directly on the flying height. The higher the resolution the 
more information about the detection. 

Group size 
Aggregations of animals, e.g. in wild boar pits or red deer 
herds, are more conspicuous due to their size and their 
distribution pattern. 

Species 
Species-specific factors which affect p are e.g. size, form, 
coat colour and thickness. 

Topography 
A diverse relief with ridges and valleys produces a 
heterogeneous image and can decrease p. 

Table 1: Parameters affecting the detection probability p of wildlife on 

airborne imagery. ∆T describes the difference between 

surface temperature of the animal and the surrounding 

background in °C. 

4.3 Modelling availability bias 

Another potential source of error poses the availability for detection. 

Assuming the process of estimation is sound in itself, availability 

can be assessed, for example, via ground observers (Hodgson et 

al. 2017), study designs with known abundance (Chrétien et al. 

2016; Conn et al. 2014), or telemetry data (Conn et al. 2014; Martin 

et al. 2012). In addition, temporally replicating flights can address 

availability bias without the need for additional data (Brack et al. 

2018; Kilburn 2018; Williams et al. 2017; Yamaura et al. 2011). Still, 

intervals have to be chosen carefully, being large enough to allow 

for a change in availability state but also short enough to meet the 

population closure assumption. Moreover, repeated flights 
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increase costs and capture for telemetry exposes the animals to 

stress. Therefore, the appropriate method has to be chosen 

carefully, depending on objective and resources.  

For our purposes, in case of a detection probability of p = 0, e.g. 

under dense coniferous forest, we want to use telemetry data to 

model the use of space / habitat and repeat the process with the 

aerial data. By comparing the ‘terrestrial’ to the ‘aerial’ habitat use 

model, we want to find out whether or to which extend ‘availability’ 

(p=0) biases our counts. If, for example, the terrestrial model 

documents that at the time of the aerial survey 70% of the GPS 

collared animals use dense coniferous forests, but in the aerial 

model only 10% of the detected animals were found in this habitat, 

we could use this information to correct our estimate. 

5 Modelling spatial distribution of 

populations 

For cases when abundance and spatial distribution of a population 

are of interest, one can use a density surface model (DSM) (Miller 

et al. 2013), which consists of a spatial model of the abundance of 

a biological population that has been corrected for uncertain 

detection via distance sampling methods. DSM focus on model-

based inference facilitating to extrapolate to a larger study area. An 

important assumption of this approach is that distances do not 

contain total information about the spatial distribution of animals. In 

a two-stage procedure, (1) a detection function is fitted and counts 

summarised per segment (i.e. contiguous, homogenous transect 

section), and (2) a generalised additive model (see Wood and 

Augustin 2002) is fitted for each segment, with counts as response 
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variable and covariates as predictors. Furthermore, DSM allow to 

incorporate structures accounting for spatial autocorrelation into 

the model (Miller et al. 2013). Since images are recorded 

consecutively, they are not independent from each other. Close 

images are presumably more similar in their environmental 

conditions than those further away from each other. 

In summary, we would like to test if these models, adapted to our 

method, could be used to provide more detailed information about 

the study population. The statistical computation software R 

provides several packages for these tasks, e.g. Distance (Miller et 

al. 2019) and DSM (Miller et al. 2017). Moreover, it has 

comprehensive data transformation and visualisation capabilities, 

useful for data preparation and presentation. 

6 Implications 

We are convinced that our research has significance for at least 

two reasons. First, improved density estimates offer the possibility 

of a better understanding about the relationship between habitat, 

animal and the detection process. We might answer follow-up 

questions regarding the suitability of certain areas for wildlife, but 

also, for example, how species differ in relation to detection. 

Second, refining the methodology is the first and crucial step 

towards developing a complete workflow, from planning the study 

design to the final modelling process. We are confident that once 

such a framework becomes more widespread it can help making 

well-informed management decisions such as improved shooting 

plans. 
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